Highly-crystallized quaternary chalcopyrite nanocrystals via a high-temperature dissolution–reprecipitation route
نویسندگان
چکیده
منابع مشابه
An insight into the mechanism of charge-transfer of hybrid polymer:ternary/quaternary chalcopyrite colloidal nanocrystals
In this work, we have demonstrated the structural and optoelectronic properties of the surface of ternary/quaternary (CISe/CIGSe/CZTSe) chalcopyrite nanocrystallites passivated by tri-n-octylphosphine-oxide (TOPO) and tri-n-octylphosphine (TOP) and compared their charge transfer characteristics in the respective polymer: chalcopyrite nanocomposites by dispersing them in poly(3-hexylthiophene) p...
متن کاملLow-temperature synthesis of LiFePO4 nanocrystals by solvothermal route
LiFePO4 nanocrystals were synthesized at a very low temperature of 170°C using carbon nanoparticles by a solvothermal process in a polyol medium, namely diethylene glycol without any heat treatment as a post procedure. The powder X-ray diffraction pattern of the LiFePO4 was indexed well to a pure orthorhombic system of olivine structure (space group: Pnma) with no undesirable impurities. The Li...
متن کاملSynthesis of hexagonal structured wurtzite and chalcopyrite CuInS2 via a simple solution route
Wurtzite semiconductor CuInS2 [CIS] has been reported in recent years. As a kind of metastable structure, it is a great challenge to synthesize pure wurtzite CIS at low temperature. In this paper, via a simple and quick solution route, we synthesize both wurtzite- and chalcopyrite-structure CIS. Well-controlled wurtzite CIS hexagonal plates are obtained when an appropriate agent is added. The i...
متن کاملWurtzite Cu2ZnSnS4 nanocrystals: a novel quaternary semiconductor.
A new wurtzite phase Cu(2)ZnSnS(4) was discovered and the corresponding nanocrystals have been successfully synthesized. They have been characterized in detail and showed the photoelectric response, which demonstrated their potential in the application of photovoltaic devices.
متن کاملSynthesis and characterizations of quaternary Cu2FeSnS4 nanocrystals.
Quaternary tetragonal Cu(2)FeSnS(4) nanocrystals have been synthesized by a simple hot-injection method. Detailed characterizations have been made. A suitable optical band gap of 1.28 ± 0.02 eV and a notable and stable photoelectrochemical response indicate their potential for application in solar cells.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chemical Communications
سال: 2011
ISSN: 1359-7345,1364-548X
DOI: 10.1039/c1cc10749f